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Abstract:  

This work sheds light on the intricate interdependencies within the magneto-hydrodynamic boundary 

layer flow of a Prandtl-Eyring fluid with heat effects. The numerical solutions and resulting trends 

provide valuable insights for applications in fields such as materials science, engineering, and 

physics. The partial differential Equations describing the momentum and heat equations are converted 

into ordinary differential equations which are nonlinear, with the assistance of similarity 

transformations. Numerical solution for the above equations is brought forth by employing the Keller-

Box method. The out puts of our study is explained through tables and graphs. It is seen that there is 

uplift in velocity profiles and a drop in temperature profiles with an increase in Fluid parameter . 

Furthermore, the thickness of thermal boundary layer increases because of the increase in Biot 

number Bi  as well as thermal Radiation R . 
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Introduction 

Numerous industrial processes, ranging from extrusion and paper production to fiberglass 

manufacturing, leverage the principles of boundary layer flows on the surfaces of elongated objects, 

often intertwined with heat transfer analyses. Further also in some industries for the processes such 

as hot rolling, condensation process, crystal growing, polymer sheets, artificial fibers and plastic films 

etc. Due to its vast applications the researchers are curious to study the boundary layer problems. 

Sakiadis [28] was the very first researcher who studied about boundary layer flow over a stretched 

surface moving with constant velocity. Later his work was extended by Ericsson et al. [6] also by 

Chen and Char [4].  Elbashbeshy [5] studied the effect of heat of a linearly stretching sheet subject to 

blowing or suction. Some fluids used in industries are molten polymers, biological fluids, lubricants, 

mud and some fluids occurring naturally such as animal blood all are non-Newtonian in nature i.e., 

which do not have a direct relationship between stress and deformation rate. There are some non-

Newtonian fluid models namely, Powell –Eyring, power law, Maxwell, Reynaldo’s, Vogel’s model, 

and micropolar fluid models. power law model takes empirical relation from kinetic theory of liquid 

Powell–Eyring fluid over a stretching surface and it condenses to Newtonian at high and low shear 

rates. Akbar et al. [2] revealed in his study on Powell–Eyring fluid over a stretching surface in the 

presence of magnetic field that the velocity profile is directly proportional to magnetic flux and 

Powell–Eyring fluid parameters. Malik et al. [18] analyzed the models, namely Reynaldo’s, Vogel’s 

and   Powell– Eyring models on a stretching cylinder and observed that boundary layer reduced for 
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large Prandtl number values. Also, they analyzed that velocity profile increased by enhancing the 

values of suction parameter. The temperature profile reduces for large values of suction parameter. 

Ara et al. [3] illustrated the flow of Powell– Eyring fluid over a shrinking surface told velocity profile 

increased with the mass suction increment, while temperature profile showed opposite behavior. Also, 

the boundary layer thickness reduced with increase in Prandtl number. Nadeem and Saleem [21] 

observed the free and force convection flow past a stretching cone in the existence of mass and heat 

transfer. They observed that tangential velocity has opposite behavior for flow parameters. Moreover, 

they observed that skin friction coefficient increased due to the increment in ratio of buoyancy forces 

to flow parameter. Hayat et al. [12] examined the comparison of series and numerical solutions for 

flow of Powell–Eyring fluid with Newtonian heating. Also, they considered the internal heat 

generation and absorption. Malik et al. [96] used Keller box method and analyzed the MHD flow of 

tangent hyperbolic fluid over a stretching cylinder.  In references [22, 27], authors investigated the 

Powell–Eyring fluid model in different physical conditions. The magneto-hydrodynamics (MHD) of 

an electrically conducting fluid is encountered in many problems in geophysics, astrophysics, 

engineering applications and other industrial areas. Focusing on moving and stretching surfaces, 

Rajesh Kumar et al. [23] studied MHD flow and heat transfer on a continuously moving vertical plate 

and Ishak et al. [15] analyzed the same case over a stretching sheet. Khan et al. [16] studied the impact 

of heat transfer on the Newtonian MHD boundary layer of Powell-Eyring fluid over a stretching sheet. 

They made it clear, for higher values of fluid parameter and Hartmann number, velocity profile 

decreases. Hussain et al. [14] confabulated that magneto hydro dynamic Sisco fluid over a stretching 

cylinder by employing shooting method asserted the effects of viscous dissipation on energy equation. 

At recent days, Gangadhar et al. [10] made a study on the impacts of chemical reaction over tangent 

hyperbolic fluid on a stretched surface and concluded that in the region of boundary layer the chemical 

reaction impacts the concentration distribution. Again, Gangadhar et al. [9] examined, by using 

spectral relaxation technique the impacts of viscous dissipation as well as heat absorption or 

generation on unsteady boundary layer flow of a nanofluid over a stretched surface and gave 

conclusion that the heat source/sink lowers heat transfer rate all over the boundary layer.   

 

The devices which are operated at high temperature like gas turbines, nuclear power plants, satellites, 

space vehicles, the radiation effect on magneto hydrodynamics flow absolutely important. Takhar et 

al. [31] scrutinized the effect of radiation on magneto hydrodynamics free-convection flow of a gas 

over a semi-infinite vertical plate. Hossain and Takhar [13] examined the radiation effect on a mixed 

convection flow of an optically depth uniformity flow over a vertically heated porous plate with 

uniform surface temperature and uniform suction rate where radiation is included by supposing 

Rosseland diffusion approximation. Ghaly [11] evaluate the effect of radiation over a stream line 

flow, and Raptis and Massalas [25] and El-Aziz [1] explored the above which were not steady as 

well. Shateyi et al. [30] analyzed a MHD flow by radiation heat transfer on a vertical plate. 

Researchers Raptis and Kafoussias [24], Sattar et al. [29], Kim [17], and Whitaker [32] gave results 

regarding the radiation of heat transfer in porous medium. In manufacturing of polymers the effect of 

radiation plays a crucial role. Mukhopadhyay [20] examined the mixed convection flow and transfer 

of heat upon a porous stretching surface in a porous medium. The eventuality and effects of MHD as 

well as radiation on a boundary layer flow and heat transfer study along vertical elongated sheet is 

observed by Ferdows at al. [7]. Their observation ratifies and approves the fact that Nusselt number 

falls down with the influence of radiation. Ganesh kumar et al. [8] tested non linear thermal radiation 

and MHD out come on double diffusive mixed convection boundary layer flow of visco elastic 

Nanofluid over a stretched sheet. Raptis [26] investigated the radiation as well as MHD effects on 

boundary layer flow over a vertical plate.   

Hence forth, this detailed work outlines a theoretical study and scrutinization of MHD flow belongs 

to Prandtl –Eyring fluid over a stretching sheet. A mathematical model was made by considering the 

heat effects both radiation and convection. For numerical solution we used Keller-Box method. The 
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velocity and temperature profiles are compared for both Prandtl-Eyring and Newtonian fluids and 

variations of these profiles for different parameters are also examined.  

 

Mathematical Analysis 

 

We consider a Prandtl-Eyring fluid flow which is two dimensional, non –Newtonian, steady, 

incompressible upon an elongated or a stretching sheet. This stretching is linear along x axis and the 

fluid distributed throughout the positive half plane of vertical axis. We applied Magnetic field 

normally to this flow. The physical diagram and coordinate system of the problem is illustrated in 

figure 1.  

 

 
Figure 1: Geometry of the problem. 

 

Here mass, momentum is conserved. So their equations are given by 
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Here J,H,V,  are the velocity field, Cauchy stress tensor, electric current density and fluid density 

respectively. 
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Here S,I,p,   are fluid pressure, identity tensor, dynamic viscosity and extra stress tensor of the fluid 
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Here both A and C are the fluid parameters. From equations (4), (5) and with approximations of 

boundary layer, equations (1), (2) and (3) becomes 
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Here velocity components are u, v and σ is electrical conductivity. 
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Above, U(x) is fluid’s stretching velocity. 
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Here , f are independent and dependent variables,   is kinematic viscosity.  
Now the eq. (7) and (8) changes to 
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Here w , the shear stress at the wall is given by
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By using dimensionless variables the skin friction transforms to  
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Numerical procedure to get the solution 

Kellor –Box method is applied to compute the Eqs. (11) and (12). In this method we introduced the 

new dependent variables p, q, r and t in order to convert the second order D.E into first order D.E 

such as, 
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The new conditions of the boundary are         
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With boundary conditions 
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The system of linear differential equations (32) to (36), is converted into block tri-diagonal matrix 
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transverse magnetic field. The thermal radiation effect and convective heating on    boundary is 

examined by using Keller-Box method”. Also our reports are compared with existing ones of Akbar 

et al. [2], Malik et al. [18] and Hussain et al. [14] via table 1 and all values are agree with those values.   

For numerical results and conclusion we considered ,0=M  = ,4   ,5.0=   ,4.0=Rd   ,72.0Pr =   

.2.0=Bi  Figure 2 and 3 convey the temperature and velocity profiles of Newtonian and Prandtl-

Eyring model. The figure indicates a significantly higher magnitude of velocity for the Prandtl-Eyring 

fluid model compared to the Newtonian model. This disparity can be attributed to the fact that the 

Prandtl-Eyring fluid exhibits shear thinning behavior, wherein the viscosity decreases with the shear 

rate. This characteristic leads to an increase in fluid velocity and a corresponding decrease in fluid 

temperature. 

Figure (4) interprets magnetic field parameter’s (M) behavior upon velocity profiles. It is a clear that 

the transverse magnetic field cuts down the fluid velocity internally inside the momentum boundary 

layer. Magnetic field produces electricity in the flow as a result Lorentz force is exerted on the flow 

and the resistive nature of this force opposes the fluid motion and consequently the velocity ( )f 

decreases. 

Figure (5) depicts that if magnetic field parameter values increase the temperature profiles also 

increases. Since the momentum thickness of boundary layer is a function of decreasing magnetic field 

parameter and due to presence of Lorentz force heat is produced which raises the thickness of the 

thermal boundary layer substantially leading to raise the temperature profile. 

Figure-6 shows the effect of the fluid parameter  on velocity profile. The velocity profile shows a 

supplement rise with increasing ,  a raise in   causes a fall in viscosity that gives rise to the uplift 

of the velocity field.  

Figure-7 explains the action of  upon the temperature as the increase in ,  the temperature profile 

along with thermal boundary layer thickness reduces since greater values of  results in curtailment 

of the fluid viscosity. Hence, temperature falls down takes place. 

Figure (8) Shows, raise in radiation parameter increases the temperature profile. The radiation 

parameter Rd is liable for increasing thermal boundary layer thickness. So it empowers and allows 

the fluid from the flow region to dispense heat energy, as a result of this heating of the system takes 

place. The fact is authentic and correct because Rosseland approximation delivers a rise in 

temperature. 

Figure (9) demonstrates the aspect of the Biot number Bi  on the temperature field. It is remarked that 

there is a rise in temperature for large Biot numbers Bi  . On account of fact, as we increase the Bio 

number, the heat transfer coefficient also increases which is bound to elevate and give rise to 

temperature profile. Which supports the statement, an Increase in Biot number also accounts to a 

thermal slip at the wall.  

Figure (10) presents the temperature profiles for various values of Prandtl number. The Prandtl 

number Pr , explains the momentum and thermal diffusivity fraction. It is discovered and seen that 

when we Increase the Prandtl number Pr,  thickness of thermal boundary layer decreases means 

temperature decreases. The analysis behind this is that lower the values of Prandtl number Pr,  

corresponding thermal conductivities increases so heat radiates away from the heated plate briskly.  

The changes in skin friction coefficient for different values of magnetic parameter M and fluid 

Parameter is demonstrated in Fig 11. It’s seen that the coefficient of skin friction decreases when we 

increase , and increases when M  is increased. Therefore, greater values of M can be brought into 

account for the inclination of coefficient of skin friction. Diagrams 12 and 13 depicts that the values 

of local Nusselt number increases for increasing values of and Bi ,  whereas decreases by increasing 

M  and Rd . So, by choosing suitable values of   and Bi  we can cool the machines in different 

industries. 

 

Conclusions     
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In the study of MHD Prandtl- Eyring fluid model over stretching sheet by considering the effects both 

radiation and convection, we are given the following observations.  

1. Newtonian fluids typically demonstrate a more gradual flow compared to Prandtl-Eyring fluids in 

terms of velocity. 

2. Increasing the fluid parameter generally boosts velocity, while a rise in the magnetic parameter 

tends to reduce velocity. 

3. Higher Biot numbers are associated with an increase in wall temperature and simultaneous 

induction of thermal slip. 

4. The skin friction coefficient decreases with an increase in    and increases with a rise in M. 

5. Raising the value of Rd leads to a reduction in the local Nusselt number. 

 

The current study solves the problems related to the fluid flows over stretching surfaces mainly in 

polymeric sheets, thinning of copper wires, annealing and food processes.  

 

 

Figure 2: Newtonian model verses Prandtl – Eyring model on velocity profiles )(f  . 

 

 
Figure 3: Newtonian model verses Prandtl – Eyring model on temperature profiles )( . 
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Figure 4: Velocity profiles )(f  under different values of M . 

 

 
Figure 5: Temperature profiles )( under different values of M .

 
 

 
Figure 6: Velocity profile )(f  under different values of . 
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Figure 7: Temperature profiles )( under different values . 

 

 
Figure 8: Temperature profiles )( under different values of Rd . 

 

 
Figure 9: Temperature profiles )( under different values of Bi . 
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Figure 10: Temperature profiles )( under different values of Pr . 

 
Figure 11: Skin friction coefficient 

2/1Re xfC under different values of &M . 
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Figure 12: Nusselt number 2/1Re−

xxNu under different values of &M . 

 

 
Figure 13: Nusselt number 2/1Re−

xxNu under different values of BiRd & . 
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