Volume 19, No. 1, 2022

Neural Network Principles and its Application


Baida Abdulredha Hamdan

Abstract

Neural networks which also known as artificial neural networks is generally a computing dependent technique that formed and designed to create a simulation to the real brain of a human to be used as a problem solving method. Artificial neural networks gain their abilities by the method of training or learning, each method have a certain input and output which called results too, this method of learning works to create forming probability-weighted associations among both of input and the result which stored and saved across the net specifically among its data structure, any training process is depending on identifying the net difference between processed output which is usually a prediction and the real targeted output which occurs as an error, then a series of adjustments achieved to gain a proper learning result, this process called supervised learning. Artificial neural networks have found and proved itself in many applications in a variety of fields due to their capacity to recreate and simulate nonlinear phenomena. System identification and control (process control, vehicle control, quantum chemistry, trajectory prediction, and natural resource management. Etc.) In addition to face recognition which proved to be very effective. Neural network was proved to be a very promising technique in many fields due to its accuracy and problem solving properties.


Pages: 3955-3970

DOI: 10.14704/WEB/V19I1/WEB19261

Keywords: Artificial, Neural, Networks, Supervised, Recognition, Stock, Unsupervised

Full Text