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Abstract 

 
Relative to Computed Tomography (CT), the increased soft tissue contrasts of magnetic 

resonance imaging (MRI) makes it a suitable imaging method to decide radiation therapy (RT). 

When MRI scans are used for therapy planning, a CT scan is still required for dosage calculation 

and x-ray-based patient placement. This raises workload, leads to incertitude owing to the 

requisite of image registration inter-modality and requires needless irradiation. Even though it 

would be advantageous to only use MR images, a way of estimating a pseudo-CT (pCT) must 

be used to generate electron density mapping and patient reference imagery. So, this paper 

brings an effective deep learning model to generate synthesized CT from MRI images using the 

following steps; a) data acquisition where CT and MRI scan images are collected,                           

b) preprocessing of images to avoid the anomalies and noises using techniques like outlier 

elimination, data smoothening and data normalizing, c) feature extraction and selection using 

Principle Component Analysis (PCA) & regression method, d) generating pCT from MRI using 

Deep Convolutional Neural Network and UNET (DCNN-UNET). Further, we assessed metrics 

such as DC, SSIM, MAE and MSE for this model. However, our suggested model outperforms 

with an accuracy of 95%. 
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Introduction 

 

In the radiation treatment (RT) chain, computed tomography (CT) with three-dimensional 

attenuation coefficient maps is critical for treatment plan making and dosage computation. 

These are used to calculate dosages based on organ and tissue characteristics (1). Modern 

methods, such as intensity modulated radiation treatment (IMRT) and volumetric 

modulated radiation therapy (VMAT), use anatomical images to correctly define the goals 

and the organ at risk (OAR) for the administration of doses (Chandarana et al. (2018); 

Johnstone et al. (2018)). The usage of magnet resonance imaging (MRIs) in clinical 

practices has been increased as a result of the strong contrast between the soft tissue and 

clearer organ boundaries as compared to CT imaging. Furthermore, numerous studies have 

shown that operational MRI details, such as diffusion-weighted imaging (DWI) and 

dynamic contrast enhanced imaging, might be useful in identifying active tumor sub 

volumes in cancers of both the head and neck (Adjeiwaah et al. (2019)). For the proper 

determination of the target volume and OAR to be integrated into the CT reference image, 

magnet resonance (MR) images now have a rigid or flexible registration in the RT chain. 

Dose estimations are based on electron density measurements from CT images (Adjeiwaah 

et al. (2019); Dean et al. (2012)). MR-related errors with CT image recordings nonetheless 

contribute to systematic uncertainty which leads to a substantial influence on dosimetry, 

particularly for tiny tumors close to OARs (Edmund et al. (2017); Arabi et al. (2016)). In 

the radiation therapy (RT) process, MRI-only RT planning is used to avoid these mistakes 

in RT planning as well as lower therapy costs. MRI-RT alone eliminates the need for MR 

and CT image registration, reducing the number of imaging sessions and their associated 

costs in the process (CT imaging). This reduces the dosage received, especially for the 

patients who require several scans during the therapy (Arabi et al. (2017)). 

 

The major problems of replacing MRI with CT are that the values of MRI intensity do not 

equate to electron densities and typical MRI sequences do not collect bone signal. 

Consequently, it is important to have a technology that can generate CT comparable details 

from MR images for the estimation of the dose throughout treatment planning and digitally 

reconstructed radiograph (DRR) patient setup. Pseudo-CTs or Synthetic CTs (pCT/sCT) 

are terms used to describe magnetic resonance (MR)-based findings. In hybrid Positron 

Emission Tomography / Magnetic Resonance Imaging (PET/MRI) systems, accurate pCTs 

from MR images are required in addition to MR-only radiation to correct PET attenuation. 

In addition, the reduced geometric validity of MRI may still be a concern when using pCT 

for these applications, since the pCT produced may inherit any geometric distortion present 

in the original MR image. The typical methodology for MRI pCT generation without DL 

method is shown in figure 1. 
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Figure 1 Traditional pCT from MRI process 

 

Many alternative approaches for the automated creation of pseudo-CTs from MR images 

were suggested in the research. Tissue segmentation strategies, learning techniques, and 

atlas methods are the three main categories. The first segment of images, or the 

categorization of the MR image voxels into a distinct collection of tissue types, can be 

addressed by Tissue Segmentation (e.g. air, bones, fat, and soft tissues). Tissue 

segmentation is not a straightforward matter, as Hsu et al. (Arabi et al. (2016)) have pointed 

out, and an amount of MR images is usually insufficient to divide all major tissue types. 

Additionally, standard MR sequences cannot distinguish bone from air reliably. Therefore, 

several MR sequences, notably the specialist UTE sequences, are required to be used for 

most tissue segmenting techniques. This might lead nevertheless to additional time for 

acquiring images and more complex workflows. However, available learning methods use 

statistic learning or model fitting approaches to create a map function that integrates MR 

voxel intensities (or density patterns) with the related CT numbers (Edmund et al. (2014); 

Korhonen et al. (2014)). As with tissue segmentation, it is inadequate to generate valid 

predictions using standard MR images alone. Some techniques need manual segmentation 

of the bone volume is required to create distinct models in various areas (Kapanen et al. 

(2013)).  Further, multiple sequences are utilized to differentiate bone voxels from air, in 

particular sequences from UTE (Johansson et al. (2011); Navalpakkam et al. (2013)) as an 

alternative. In addition, other coordinate-related features and patterns of local intensity to 

MR-intensity values have been created and used as extra inputs to increase the productivity 

of the pCT model (Rank et al. (2013)). 

 

We offer a new pseudo-CT generation learning approach in this paper, which uses recent 

advances in deep learning (DL) as well as convolutional neural networks (CNNs). CNN 

(Ronneberger et al. (2015); Chen et al. (2014)) are multi-layered models that are completely 
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trained and incorporate complicated, high-dimensional interactions between input and 

output. They have been utilized for computer-assisted identification and for the 

segmentation of biomedical images to resolve issues in many domains of computer vision 

(Zeiler et al. (2014); Simonyan et al. (2014); Badrinarayanan et al. (2015)). The CNN's 

capacity to learn complicated end-to-end models rather than handmade components is 

appealing.  As a result, we utilize CNN to develop a direct mapping of images between MR 

images to their CTs respectively. This differs from all previous pCT learning methods based 

on hand-design and voxel-by-voxel CT values. 

 

Key Highlights 

 

This paper focus on generating a pseudo-CT from MRI using an effective Deep Learning 

model in which following are the highlights; 

 

a. This study is intended to enhance the positioning of patients and the dosage in brain 

radiation alone MRI, utilizing acquired MRIs. 

b. Exploration of the ability to remove and replace the CT simulator with CT images 

from the brain of the MRI and calculate the density of the electrons for the planning 

of the patient therapy. 

c. A new Deep Convolutional Neural Network- U-Net (DCNN-U-Net) approach is 

presented for pCT creation and its efficiency assessed in a series of images of patients 

with brain tumors. 

d. Used to investigate the link exists between intensity of MRI and CT- Hounsfield unit 

(HU) in various areas. 

e. Find a compact and effective model, which can offer details on the electron density of 

MRI images to produce synthetic CT images at a reasonable error rate that might be 

utilized during clinical RT therapy. 

 

Organization of the paper: As we already come across the introductory part in Section 1, 

rest of this paper is as follows; Section 2 depict the related works, followed by Section 3 

with methodology, section 4 depicts the implementation and results , Section 5 depicts the 

discussion and finally Section 6 depicts conclusion. 

 

Related Works 

 

In the calculation of MRI, T. Korsholm et al. (2014) claimed that a dosage error of 2% is 

medically reasonable (considering a 1 % dose computation error when using CT). 

Furthermore, patient location validation using this technology to create reference images is 

difficult due to a lack of bone segmentation. The electron density or Hounsfield Unit (HU) 
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value of each class may also be used to separate the tissues in the MR image into discrete 

classes. In most cases, there are two or three classes: bone and soft tissue, and in certain 

circumstances, air. These approaches have been described with enhanced dosimetry in 

comparison with the use of an override of homogenous density, especially brain, prostate, 

head and neck. 

 

The semiautomatic approach of bone segmentation in the skull was tested by Stanescu et 

al. (2008). A point here was put near the structure, which needed to be segmented. The 

structure was then divided into thresholds. The authors highlighted the need of manual 

modifications in certain cases, especially to the bottom region of the skull. 

 

Before overriding bulk density, Paula et al. (2019) utilized an atlas-based segmenting 

approach to divide the bone. If required, manual change has again been performed. 

However they concluded that manual contour adaptation is not ideal and these may lead to 

a greater usage of bulk density approaches in a future clinical workflow. 

 

Atlas-based methods usually employ a conventional single MRI sequence for the 

production of a pCT. This provides a minimal scan duration, decreasing the risks of moving 

patients. This also implies that it is easy to use the scan technique in a clinical setting. The 

pCT manufacturing process may be completely automated and reference images to verify 

the placement and the automatic contouring of OAR can be created. Sjolund et al. (2015) 

pointed out that atlas-based technologies for imagery artifacts are reasonably resilient 

because they rely on past knowledge about training. 

 

Further, prostate planning, for instance, the simplest atlas approaches employ one or the 

medium atlas, such as established by Dowling et al. (2019). The average atlas approach is 

used to co-register paired MRI and CT images from the patients' database. The average 

MRI atlas is then created, along with a corresponding organ shape. In order to calculate the 

distortion that must be forced on each MRI scan in the database to obtain the average CT 

atlas, identical deformations for the respective registered CTs may be created, and the 

average of them can be computed. Moreover, to create a pCT for an incoming MR image, 

the average MRI atlas is captured in the MRI scan and the average CT atlas then used to 

apply these deformations, yielding the pCT. It is also possible to communicate the organ's 

shape. The most recent application for CT synthesis is the Cone Beam Computed 

Tomography (CBCT)-to-CT conversion through DL. Liu and al. (2019) integrated            

CBCT-CT pair organ change into a cycle-GAN generator, revealing that their contribution 

substantially improved the predictions of the same network without the AG. CBCT-CT 

pairs in the context of pancreatic adaptive RT. Okty et al. (2020) presented a novel 



Webology, Volume 18, Special Issue on Current Trends in Management and Information 

Technology, October, 2021 

709                                                   http://www.webology.org 

mechanism termed "Attention Gate" (AG) to focus on target structures that may differ in 

shape and size in relation to recent developments in the field of deep education. 

 

It would be rather fascinating if a CNN were to automatically create a pCTs measurement. 

Matt et al. (2020) stated that a multi-task network and a Bayesian based probabilistic model 

would be employed with uncertainty for automatic creation of a pCTs measurement. In 

recent years, two more projects have advocated that uncertainty should be used either 

through the integration of self-trained networks or by drop-off variation. To date the subject 

of deep learning insecurity, estimate for pCT generation has only been lightly addressed. 

Future study aimed at creating criteria in which failure instances may be automated with 

the use of uncertainty provision would be intriguing. The CT-rescan or pCT-adjustment is 

considered viable in patients with incorrect pseudo-CTs. 

 

Methodology 

 

   
Figure 3 Proposed Block diagram for generating pCT 

 

Figure 3 depict the block diagram of proposed system starts with data collection of both 

MRI and CT scan from available publicly RIRE dataset. A Magnetization Prepared Rapid 

Gradient Echo (MP-RAGE) sequence was used to produce T1-weighted MR data for this 

database. This is a fast echo-gradient procedure where a pre-preparation pulse is used to 
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increase contrast well before acquisition phase. Dimensions of the MR-data were 

256x256x128 at 0.98mm × 0.99mm x 1.484mm on average. The matching CT scans were 

made of 3 mm diameter slice width with slice sizes 512 × 512, with a mean resolution of 

0.419 mm x 0.419 mm. This raw data require pre-processing in order to eliminates noises 

and other anomalies with the help of techniques for outlier elimination, data smoothening 

and normalization. These pre-processed images are then utilized for extraction process 

using PCA and later, selection of features are done using regression method. Finally to 

generate pCT, DCNN-UNET is used. 

 

Dataset Collection 

 

We collected the MRI and CT scans from publicly available dataset called The 

Retrospective Image Registration Evaluation (RIRE) dataset (Dataset can be downloaded 

from: [28]). In the RIRE database, images from 19 individuals are included in T1 and T2. 

These subjects are trained and the rest are tested. For 800 epochs, 477 training images with 

1.156 batch size are trained. Figure 4 (a, b) depict the CT and MRI respectively. No 

categories of brain tumor data set instances that is been used for this implementation. 

 

 
 

                    (a) 
 

  

                    (b) 
 

Figure 4 a) Instances of dataset showing CT, b) Instances of dataset showing MRI 
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Pre-processing 

 

In preprocessing usually, image noise removal or image enhancement occurs. It helps to 

segment the part of the medical image affected by pathology. Zhang et al. (2016) has 

addressed these issues where the noise elimination was done by employing a median filter 

and the high-frequency factor shown in the picture. In addition, image enhancement was 

accomplished with the techniques of outlier elimination, data smoothing and normalization. 

 

1. Outlier Elimination 

 

Despite the availability of a wide range of state-of-the-art de-noising techniques, accurate 

noise reduction from MRI images remains a difficulty. A wavelet-based algorithm is used 

to denoise and preserve the true signal in the frequency domain. This builds the scaling 

coefficients freelance of the signal and therefore are often simply removed. We have used 

the Wavelet toolbox in MATLAB (2016) and lifting wavelet transform (LWT) (Lukas et 

al. (2004)) functions that are lwt2(), ilwt2(), and lwtcoef2(). These functions helped in 

removal of noise from MRI image. In addition, these functions facilitated to recover weak 

signals from noise and the processed image were cleaned up without blurring or losing the 

clarity. 

 

2. Data Smoothing 

 

A loss in spatial specificity is the biggest drawback of smoothing data. Smoothing 

distributes the signal in every subject, so we do not have to be as particular as to where it is 

located. This may or may not be a matter of worry depending on the spatial extent of your 

activation. Despite this decrease in spatial precision, smoothing MRI data is beneficial for 

a number of reasons. These may mostly be classified into statistical (smoothing helps you 

discover activation) reasons and unfair reasons (Gelvez et al. (2018)) (smoothing influences 

how you interpret your results). The Gaussian filter, where the dimensions of a gaussian 

smoothing kernel are usually represented as half its entire breadth (FWHM), was used for 

data smoothing. This blur is also significantly dependent on the standard variability 

employed in a Gaussian smoothing 3D convolution mask as well as on the size of that 

Gaussian mask or kernel. To this end, the synthetic base exposed to the procedure was 

considered as standard deviation. 

 

𝐺(𝑖, 𝑗, 𝑘) =
1

(√2𝜋)2 𝜎𝑖𝜎𝑗𝜎𝑘

𝑒
−(

𝑖2

2𝜎𝑖
2+

𝑗2

2𝜎𝑗
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Webology, Volume 18, Special Issue on Current Trends in Management and Information 

Technology, October, 2021 

712                                                   http://www.webology.org 

3. Data Normalization 
 

 
Figure 5 Pipeline of Intensity Normalization 

 

T1-w, T2-w, PD, and FLAIR intensities are recorded in arbitrary units in conventional MRI 

(Lukas et al. (2004)). Though the same technique is followed, images are not consistent 

between scanners, subjects, or visits; and thereby algorithm performance, prediction, and 

inference are get affected. Moreover, the most basic tasks, such as thresholding a picture, 

may be complicated. However, the process of intensity normalization reduces the intensity 

differences between persons to a manageable level. The zscore_img is a function in 

neurobase, and uses mean WB and standard deviation WB computed from all voxels in the 

brain mask to Z-score each voxel. 

 

T1WB = T1 − μWB σWB 
 

However, it requires an image as well as a binary mask. The brain mask's default setting is 

to use all voxels. The intensity acquired after normalization is seen in Figure 6. 

 

 
Figure 6 Normalization 
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Feature Extraction and Feature Selection 

 

The Principal Component Analysis (PCA) is among the most effective image identification 

and encoding techniques. It is used to minimize the data's dimensionality and to extract 

features (Chandarana et al. (2018)). Feature extractions are carried out throughout both the 

training and testing phases. The basic goal of an MR image recognition system is to find as 

many similarities as possible between training and test MR images. Let Ω1 be the M x N 

pixel resolution training image of image 1 with a pixel resolution of M x N. (M rows, N 

columns). First, turn the image into a pixel vector Φ1 by concatenating each of the M rows 

into a single vector. The vector Φ1’s length (or dimensions) will be M x N. The PCA 

algorithm transforms the vector Φ1 into a vector ω1 with a dimensionality of d, where d << 

M x N. These feature vectors ωi are computed and saved for each training image Ωi. 

Further, PCA is used to construct the feature vector ωj of the test image Ωj during the testing 

stage. The correlations between ωj and all of the feature vectors i'sωi’s in the training set 

are calculated in order to identify the test image Ωj. The Euclidean distance is used to 

calculate the similarity between feature vectors. The image recognizer's output is the 

identification of the most comparable ωi. If i = j, the MR image j has been correctly 

recognized; otherwise, if i ≠ j, the MR image j as misclassified. For feature selection 

regression method is used in which features from subtype of the dataset is predicted based 

on the knowledge acquired from its counterpart. Moreover, Gradient descent algorithm is 

used for finding the parameter values for linear regression that outputs lowest values J (θ) 

value. 

 

1. Modeling Relation of CT and MRI 

 

The technique of voxel is based on the premise, at least for those voxels of the same tissue 

type, that there are a link between a CT number of a voxel and an MRI intensity. However, 

CT values may differ quite much from those of the same MRI value, even from the same 

cell type. Our goal is thus to get a second set of MRI images in the second set, which can 

enable us to differentiate these voxels and map them to matching CT numbers (Ronneberger 

et al. (2015)) with the same MRI value (in the first set), but with a high different of CT 

numbers. 

 

All voxels within the same region are pooled together as training data to construct the 

regional prediction model for each section of the anatomical structure (bony, soft and mixed 

regions). Each voxel's data is comprised of its CT value, its standardized MR1 image 

intensity value S1, and its normalized MR2 image value S2. The prediction template is 

training to match the two MRI intensities of a voxel to its CT number for each area in the 
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HU scale. In this work, we employed a polynomial function in the nth two variable level 

which depends on the two MRIs of a voxel in order to forecast the predicted CT number of 

the voxel: 

 

𝑃𝐶𝑇(𝑆1, 𝑆2)  = ∑ 𝑐𝑖1𝑖𝑆2
ℎ1𝑆2

𝑖2   = 𝑐0,0 + 𝑐1,0𝑆1 + 𝑐0,𝑃𝑆2 + 𝑐1,𝑆1𝑆2 + ⋯ + 𝑐𝑛,0𝑆1
𝑛 + 𝑐0,𝑥𝑆2

𝑛

𝑖1+𝑖2≤𝑛

𝑖1,𝜆2−0

  

 

MRI data from each area are divided into various value bins of MR1 and MR2 in order to 

decrease the computer overhead and noise. For MR1 and MR2, the same number of bins 

(Nbin) is used, and the bin width determined by the maximal normalized values for MR1 

and MR2. Each voxel is thus assigned to one of two bin indexes, i for the MR1 bundle and 

j for the MR2 bundle, or (i j). In these two dimensions, there might be numerous voxels 

with different CT numbers within a single (ij) bin. The bin's average CT number may be 

described as 

 

𝐶𝑇𝑖,𝑗
− =

1

𝑁𝑖𝑗
∑ 𝐶𝑇𝑖𝑗,𝑘′

𝑁𝑖,𝑗

𝑖=1

  

 

Where i-th MR 1 bin and j-th MR2 bin have Nij and CTi j,k is the CT k-th voxel number 

inside that bin, and CTi j,k , the CT k-th voxel number in that bin. We found that pCT (s1.2) 

best reflects the average CT number CTij, as a function of S1 and S2 MRI intensities, after 

the regression analysis on the training data of each region for determination of Ci1-i2 in 

polynomial. Further, the 'NonlinearModelFit' function of Mathematica is used for 

regression analysis (Wolfram, Champaign, United States). 

 

2. Generation of pCT 

 

We have designed a DCNN model to train a mapping capability directly in this study. Each 

patient's MR/CT couple with suitable CT slices can be trained by collecting all MR slices. 

Once the model has been trained, the findings are slice-by-slice applied to a fresh MR image 

and the final pCT may be constructed. Due to restrictions on GPU commodity GPU memory 

and because of insufficient training data in this work, a comprehensive DCNN model seems 

ineffective. It may sometimes be unneeded as a slice provides extensive contextual data. 
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Figure 7 Overall architecture of the proposed pCT DCNN model 

 

Figure 7 illustrates the model DCNN pCT with a convolutional layer (3x3) in each yellow 

box (with a rectified linear unit as the activation function). Every red box shows the         

max- poolling layer and every green box shows the un-pooling layer. The 2D image size 

and the depth of the feature map of each convolutional layer are at the top of each yellow 

box. The purple box shows the final 1x1 convolutional layer which produces the pCT output 

forecast (Chen et al. (2014)). The model consists of two primary components: the encoding 

part (left half) and decoding part, similar to Ronneberger et al. (2015) (right half). The 

encoding is a classical CNN that can extract from an input MR image a more complex 

hierarchy of features. The decoding element transforms features and recreates the pCT 

prediction in low to high resolution. The complete network output is a 2D image with the 

same size as the input image. 

 

The establishment of a direct link is a significant invention from (Ronneberger et al. (2015)) 

that we implemented here (in Figure 7, as pink arrows). This will enable the convolutional 

layers of the second portion to exploit the previous part's high-resolution features. This 

method makes it easier to create high-resolution predictions for the decoding component. 

If high resolution (top of network) features are sufficient to produce trustworthy CT 

predictions, the model may learn to ignore ground level features intelligently (at the bottom 
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of the network).  The functional extraction element of our model may be initialized by 

copying current VGG model weights learnt on a wide variety of image data by duplicating 

an existing architecture (i.e., 1.3 million natural images consisting of 1000 different object 

categories (Simonyan et al. (2014)). While the VGG model was trained on entirely different 

images, the low to moderate capabilities gained in a CNN model are pretty generic, and 

using a well-trained model to start a new task is an effective way to help us find good 

solutions with less training information. The components of the network in Figure 7 are 

explained in the following sections. Figure 8 depicts the U-net design. 

 

 
Figure 8 Diagrammatic representation of U-net 

 

The encoding component is used to construct a hierarchy of features by using a range of 

convolution and pooling layers. The basic component of a CNN model is a 

convolutional layer. Each convolutional layer carries out 2D input convolutions using 

filters that run via a non-linear activation function. The operation is represented 

mathematically as, 

 

Hk = max (0, Wk * X + bk), k € [0, k-1] 

 

Where Wk and bk denote the i-th filter weights and biases, respectively, while '*' denotes 

the convolution process. The filter index in the total number of filters is indicated by the 

subscript k, k [0, K-1].  The entry is denoted by X, while the output of the k-th filter, also 
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known as the k-th channel of the convolutional layer output feature map, is denoted by Hk. 

The max (0,∙), primary for the convolution output, corresponds to the non-linear function 

of the rectified linear unit (ReLU). Input X for the first convolutional layer is the MR image 

directly. The input is for the following layers from the output characteristic map. In every 

convolutional layer the number of filters is given, however, the weighting and bias (Wk and 

Bk's) are free. 

 

One of the key aspects of CNNs' success is the ability to learn the weight and the preference 

of every function map instead than providing data-driven functional extractors relying on 

the set of manually produced functions. 3x3 filters are utilized for every convolutional layer 

according to the VGG model in the coding pathway. It should be noted that 3x3 refers just 

to the spatial size of each convergence filter. The same number of components as each 

channel is a vector for every weight. If R input channels, total number of free layer 

parameters equal to Kx3x3xR+K are accessible. We utilize zero-padding to keep the output 

(spatial) size of the input for this convolution. The output characteristic map shows the 2D 

size and number of channels on each layer. 

 

Figure 7 shows that the function map needs a considerable amount of computer storage 

since every character map comprises dozens or hundreds of channels, directly related to the 

size of the image. The memory demand is a limiting issue which limits the creation of a 

DCNN model directly since there are large number of filters or channels to extract 

functions. In addition, more parameters in a DCNN model as well as more training data are 

needed. A max-pooling operational layer is used after 2 to 3 convolutional layers to lower 

the spatial resolving of the feature maps, thus enabling succeeding convolutional layers to 

learn features of a broader image context. The pooling process also allows features to be 

generated which are invariant for local disruptions. A 2x2 window and step 2 pool is used 

in the VGG model (non-overlapping window). This procedure includes the maximal 

functionality over 2x2 sub-windows of non-overlap size across each channel. The following 

can be formally formulated: 

 

Zk, i, j = maxp, q € [0, 1]
2 hk, 2i+p, 2j+q 

 

Where (i,j) the output map's spatial index and (k) the channel index. In each spatial 

dimension the max-pooling process reduces the size of the map by half and figure 7 

describes this. There are no free parameters to learn for the maximum pooling layer. 

However, the places where the greatest value is achieved in each pooling window must be 

saved for subsequent unpooling operations as a binary mask of the same size (Zeiler et al. 

2014)), and illustrated in Figure 9. 
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Figure 9 Pooling and Unpooling operations 

 

Our DCNN model decoding section shall be selected to reflect the encoding portion 

identical to (Ronneberger et al. (2015) and (Simonyan et al. (2014)) with additional layer 

of 1x1, at the end of which each vector of 64 elements in the preceding layer mapped as a 

CT-number. In contrast to the extraction feature which uses max-based layers to lower the 

spatial resolution of function maps, unpolitical layers are used for decoding information 

from broad to narrower resolution. The accompanying max-pooling layer's un-pooling can 

be considered a reversal action. It uses the binary mask to double the spatial dimension of 

the input characteristic and instantaneously transfer the characteristic value from the input 

to the output at the maximum position for each pooling window, as illustrated in Figure 9. 

The remainder of the output is made up of nulls. 

 

The un-pooling layer produces a little amount of output. Further, the convolutional layers 

use convergence mechanisms to transform the thin output into thicker representations. 

However, it was noticed a set of learning parameters separates all of these convolutional 

levels of the decoding component from the weight of the encoding part. Moreover, 

additional connections are established, as described in (Badrinarayanan et al. (2015)), to 

duplicate high resolution features from the encoding part and mix them with the output of 

un-pooling before they are transmitted to subsequent convolutions, as shown in figure 7. 

According to (Badrinarayanan et al. (2015)). When the encoding and decoding sections are 

combined, the network has a total of 27 layers and about 34.9 million parameters. 
 

The whole network may be viewed as a sophisticated end-to-end mapping function that 

transforms an MR image to a corresponding CT image. The end-to-end mapping function 

is learned by minimizing a loss or prediction error between the predicted pictures                              

F (θ; X) and the corresponding ground truth CT images Y. Further, estimation of network 

parameters θ= {W1, b1, W2, b2…} is necessary to learn the end-to-end mapping function. 

For a set of MR images Xi and their corresponding CT images Yi, use Mean Absolute Error 

(MAE) as the loss function: 

𝐿(𝜃) =
1

𝑁
∑  

𝑁

𝑖=1

𝑌𝑖 − 𝐹(𝑋𝑖; 𝜃) ∥ 
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where N is the total number of training images. When employed as a losing function for 

MAE (L1-norm), the learning becomes more resistant to external data such as noise or other 

artefacts in the images, or due to poor matching of MR and CT image. 

 

3. Implementation of Model 

 

This research work utilizes the MATLAB programming to implement the work flow. The 

MR images acquired enable accurate and quick pseudo-CT creation utilizing perceptual 

loss through a generative adversarial network (GAN). Therefore, these images might be 

employed in clinical practice for dosage planning. 

 

Validation of DCNN 

 

To test the performance of the proposed DCNN approach a 6-fold cross-validation process 

was employed. In 6 groups of the same size, the 19 patients have changed. The other five 

groups will be used as training data for the training of a DCNN-model, with one group as a 

test set. The pCT is applied to each test participant's MR-image once the model is trained. 

The accuracy of the projected pCT is evaluated with an absolute mean error in the head 

region against the real CT for each participant. 

 

𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

|𝐶𝑇(𝑖) − 𝑝𝐶𝑇(𝑖)| 

 

Where n is the overall MR head area voxel number. The head-region is defined by a binary 

mask produced automatically from the MR-image. Same as medium squared error (ME), 

the average voxel error (ME) are calculated: 

 

𝑀𝐸 =
1

𝑁
∑  

𝑁

𝑖=1

  (𝐶𝑇(𝑖) − 𝑝𝐶𝑇(𝑖)) 

and 

𝑀𝑆𝐸 =
1

𝑁
∑  

𝑁

𝑙=1

  |𝐶𝑇(𝑖) − 𝑝𝐶𝑇(𝑖)|2  

 

Performance Analysis 

 

The model was built with the help of hardware specifications such Windows 10 OS, CPU, 

AMD Ryzen 7 5800H – 9 5900HS, Graphics: Nvidia GeForce RTX 3060 – 3080, RAM: 

up to 32 GB for the MATLAB model. With the data divided into 48 iterated batches, which 

takes 50 to complete all the training samples, known as a neural network training epoch, 
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one PCT from MRI takes 37 seconds. To evaluate the accuracy of the study described, a 

voxel-like comparison of the HU from CT and synthetic CT was made. Further, the mean 

absolute error (MAE) and the mean error (ME) for the whole body were calculated. The 

comparison between the pCT-CT image and the respective actual CT image for the 

structural similarity (SSIM) index with DICE coefficients (DC) shows the                              

stereo-compatibility technique being superior to the registration method. In addition, 

utilizing Atlas and learning techniques, we analyzed our proposed DCNN-Unet. The DC 

and SSIM values of the different models are shown in Table 1. Figure 11 shows DC values 

of several models graphically represented (Gholamiankhah et al. (2021)). 

 

Table 1 DC & SSIM values 

Models DC SSIM 

Atlas method 

Learning-based methods 

DCNN-UNET (Ours) 

0.82±0.04 

0.85±0.04 

0.94±0.02 

0.84±0.06 

0.82±0.06 

0.86±0.05 

 

   
Figure 11 DC, SSIM vs. Models 

 

Table 2 depict the MAE, MSE values of various models under final subject results. Figure 

12 (a, b) displays the graphical representation of MAE values (HU) MAE values (HU) 

under final subjects. Figure 13 depict the graphical representation of 19 subjects flow of 

various models. Figure 14 depict the graphical representation of computation time taken by 

various models. Figure 15 depict the accuracy comparison of various models (Han et al. 

(2017)). Figure 16 (a, b) shows the normal MRI and pCT from MRI image. 

 

Table 2 MAE, MSE values of various models 

Models MAE (HU) MSE (HU) 

Atlas method 

Learning-based methods 

DCNN-UNET (Ours) 

76.7±17.8 

78.0±0.8 

67.5±17.3 

165.3±33.0 

114.1±27.5 

188±33.7 
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Figure 12 a) MAE (HU) vs Models, b) MSE (HU) vs Models 

 

 
Figure 13 Models’ vs Subjects based performance 

 

 
Figure 14 Models vs Computation Time per pCT generation 
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Figure 15 Models vs Accuracy 

 

 
Figure 16 a) Normal MRI scan image, b) PCT CT image from MRI 

 

Discussion 

 

This study proposes a DCNN model for the use of standard T1-weighted MR images with 

the aim of synthesized CT production. Although a profound neural network pattern usually 

needs a significant quantity of training data, the usage of the existing pre-trained model 

using the transfer learning principle achieves very high performance with our little data. 

The method of DCNN does not require a linear or deformable image recording between 

individuals and quickly learns how to map the corresponding CT image from inside the MR 

image area. The results of the assessment showed that a DCNN approach with atlas refining 

and fusion is significantly higher than that of an Atlas technique. The patch-based technique 

is intended to be based on a comparison of the various atlases or patch basic approaches 

reported in literature in order to detect comparable applicants. It's usual as well. A small 

local patch comprises extremely limited image data and employs the crude intensity of an 

image to reduce discrimination since the characteristics of the data may be very repetitious. 

Rather, the DCNN model learns a hierarchy of image properties of diverse sizes and 
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complexity from a whole image segment. In comparison with previous models our model 

offers HU an MAE of 67.5±17.3, which is considerably good. 

 

A major advantage of the DCNN approach is the fast computation time during model 

deployment. Although a model may take days to train, it has to be done once only and for 

all by multiple GPUs. It takes only a couple of seconds for a single GPU to apply the pCT 

model. Methods based upon model or atlas might be rather sluggish, otherwise. The DCNN 

approach also benefits from the fact that a huge quantity of the training data may be readily 

accommodated. In fact, because of their enormous model capacity, deep CNN models are 

generally recognized to substantially benefit from big data. Therefore, we anticipate that 

the performance of the proposed DCNN technology can considerably increase when more 

training data become accessible. The load is just longer because of an increasing quantity 

of information on the model, however, the size and speed of the final model remain the 

same. 

 

Conclusion 

 

In order to eliminate the unnecessary irradiations and workloads, a effective DL model is 

need for generating pCT from MRI. Hence we proposed DCNN-UNET for generating pCT 

from MRI which includes process of data collection from RIRE, then preprocessing to avoid 

noises and normalizing the data. Segmentation of images to gains the intensity of voxels 

and extracting these images based on the intensity values and finally generating effective 

pCT from MRI using DCNN model in which while evaluating our proposed model 

outperforms better with measures like MSE, MAE, DC, SSIM and gains an accuracy of 

95% over models like atlas based and learning based. This paper will be also useful for 

other researchers who can dig deep to find interesting new concepts and thereby increasing 

the efficient of the DL models. 
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