
Webology, Volume 17, Number 2, December, 2020

430 http://www.webology.org

Effective Job Execution in Hadoop Over Authorized Deduplicated

Data

Sachin Arun Thanekar*

Research Scholar, Department of Computer Science and Engineering, Koneru Lakshmaiah

Education Foundation, Vaddeswaram, AP, India. E-mail: sachin.sangamner@gmail.com

K. Subrahmanyam

Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education

Foundation, Vaddeswaram, AP, India.

A.B. Bagwan

Professor, SPPU, Pune, India.

Received July 07, 2020; Accepted September 10, 2020

ISSN: 1735-188X

DOI: 10.14704/WEB/V17I2/WEB17043

Abstract

Existing Hadoop treats every job as an independent job and destroys metadata of preceding

jobs. As every job is independent, again and again it has to read data from all Data Nodes.

Moreover relationships between specific jobs are also not getting checked. Lack of Specific

user identities creation and forming groups, managing user credentials are the weaknesses of

HDFS. Due to which overall performance of Hadoop becomes very poor. So there is a need

to improve the Hadoop performance by reusing metadata, better space management, better

task execution by checking deduplication and securing data with access rights specification.

In our proposed system, task deduplication technique is used. It checks the similarity

between jobs by checking block ids. Job metadata and data locality details are stored on

Name Node which results in better execution of job. Metadata of executed jobs is preserved.

Thus by preserving job metadata re computations time can be saved. Experimental results

show that there is an improvement in job execution time, reduced storage space. Thus,

improves Hadoop performance.

Keywords

Hadoop, H2Hadoop, Deduplication, HDFS, Storage.

Introduction

In hadoop framework, the allocated task is executed with the help of multiple workers

called as data nodes. The task is executed using map reduce work strategy. The

Webology, Volume 17, Number 2, December, 2020

431 http://www.webology.org

processing task is assigned to the name node of hadoop framework. The name node is

responsible for assigning task called as job to the data nodes. This process is called as

mapping. After receiving the task to the data node, data node processes the data and

returns the execution result to the main name node. Main node collects the results from

all workers and generates a final result copy. This process is called as reduce process.

The repetitive, same job allotment takes equal execution time and memory as before

using map reduce strategy on hadoop framework. The name node and/or data node do

not preserve the history of processing [1],[2],[3],[4]. To overcome this limitation of

existing hadoop framework a new system is proposed. The proposed system is extension

to the existing map reduce workflow over hadoop framework. This extension improves

system work execution efficiency in terms of time and memory.

As compared to native Hadoop, H2Hadoop results in reduced CPU time, less read

operations. Previous jobs data is not maintained in Hadoop, Without the knowledge of

earlier processing it simply allocates Data Nodes. So every job is independent which

again reads data from all Data Nodes. Also no arrangement is there for checking

relationships between different jobs. Hence there is a scope to improve Hadoop

performance [12],[17],[19],[20].

Deduplication system is used to avoid data-duplication and random block distribution.

Space management is the main focus of this task. Job execution is handles by

MapReduce.

Job metadata and data locality details are stored on Name Node which results in better

execution of job. Executed jobs related metadata is preserved in a separate data structure

on NameNode. Thus jobs are executed efficiently with better space management

[13],[16],[17],[23]. An authorization environment is required to restricts unauthorized

Data access, job execution by creating user identities.

So the objectives of our work are,

• To make storage space more effective by using de-duplication.

• To design a system to improve job execution performance using metadata over HDFS.

• To create user identities and groups for authorized data access and job execution over

hadoop.

Webology, Volume 17, Number 2, December, 2020

432 http://www.webology.org

Background Knowledge

1) Hadoop

Fig. 1 Hadoop Daemons

For data storage Client requests NameNode and it replies with IP address of the

DataNode. Raw data in converted into HDFS format and divided into different data

blocks by Client. Then these blocks are stored on different DataNodes[5],[6],[20].

Job Tacker gets a mapreduce job with source file name from Client. Job tracker searches

and send it to those task trackers which have that required data blocks. Then assigned

task trackers finishes the required jobs execution and sends results to the Job Tracker

through which Job Tracker client gets all the final results.

As shown in figure 2, every job is independent in Hadoop, it re execute the same job

again even if the results are already calculated. The repetitive, same job allotment takes

equal execution time and memory as before using map reduce strategy. The name node

and/or data node do not preserve the history of processing. [7],[10],[14],[21],[22].

2) H2 Hadoop

In H2Hadoop, metadata of earlier finished jobs is stored on Namenode. This data is

stored in dynamic data structure known as Common Jobs Blocks Table (CJBT) [5,6,

8,9,11]. The workflow is as shown in figure 3. While job is submitted for processing,

first it is searched in CJBT whether similar file is processed previously or not

[13,15,16,17,18]. Thus re computations, resources can be saved. Operation speed also

Webology, Volume 17, Number 2, December, 2020

433 http://www.webology.org

increases. CJBT preserves Jobs with common name, Jobs with common features, Block

Names with Block Id.

Fig. 2 Hadoop Workflow

Webology, Volume 17, Number 2, December, 2020

434 http://www.webology.org

Fig. 3 H2Hadoop Workflow

Webology, Volume 17, Number 2, December, 2020

435 http://www.webology.org

Proposed Work

As shown in figure 4, the system has following three main functionalities:

 Data Uploading and Authorization

 Job Execution

 Task de-duplication checking similarities over data

1) Data Uploading and Authorization

In data uploading data deduplication checking and data authorization policies are

constructed whereas in job execution, efficient task allotment and execution is done [24].

In the following section detailed description of these functionalities is given.

Fig. 4 Architecture of proposed system

File Level (Pre-filtering) Deduplication Algorithm

 Input: text file

 Output: divided data in the form of blocks or no output if match found

 Metadata table stores block details

When file is submitted,

Webology, Volume 17, Number 2, December, 2020

436 http://www.webology.org

Check attributes of the file

If these attributes matches with metadata table,

Then no need to process, skip the process

Else divide data into blocks;

Store new files attributes in metadata table;

Inform Data node to store data;

End

Block Level (Post-filtering) Deduplication Algorithm

 Input: text file divided in the form of blocks and their details

 Output: divided data in the form of blocks or no output if match found

 Metadata table stores block details with hash values of blocks

When receives output from file level Compute hash function

Check this with index table, if match found skip further process

Else inform DataNode to store new blocks;

End

2) Job Execution

File Level (Pre-filtering) Deduplication Algorithm

 Input: text file

 Output: divided data in the form of blocks or no output if match found

 Metadata table stores block details

When file is submitted,

Check attributes of the file

If these attributes matches with metadata table,

Then no need to process, skip the process

Else divide data into blocks;

Store new files attributes in metadata table;

Inform Data node to store data;

End

Block Level (Post-filtering) Deduplication Algorithm

 Input: text file divided in the form of blocks and their details

 Output: divided data in the form of blocks or no output if match found

 Metadata table stores block details with hash values of blocks

Webology, Volume 17, Number 2, December, 2020

437 http://www.webology.org

When receives output from file level Compute hash function

Check this with index table, if match found skip further process

Else inform DataNode to store new blocks;

End

As shown in figure 5, first the whole file identity is checked, if match found then process

ends there and the previously calculated results are used. If match not found then file

data is divided into blocks, hash values of these newly created blocks compared with the

previously stored values in the metadata table. If match found then those blocks will not

be stored again. Only new blocks which are not previously processed or stored will be

stored and accordingly metadata table entries will be updated.

User Rights Specification

After uploading the file user can specify rights for file access. The rights includes read,

write and execute permission. User can assign file permission to single user or can assign

rights to the group of users. Based on the assigned permission user can be able to execute

the job on the given files.

Fig. 5 Proposed System WorkFlow

Webology, Volume 17, Number 2, December, 2020

438 http://www.webology.org

3) Task De-duplication Checking Over Data

Here with the help of CJBT similarities between multiple jobs are found out with

following attributes, Job name, User, Data node name, Dataset details. The similar blocks

will not be processed again which are common in the two different tasks. Thus

repreocessing of similar blocks is reduced and similar blocks will be processed and

stored only once.

Result Analysis

Experiment Setup

We have used Ubuntu 16.04, Hadoop 2.6.0, Java 1.7.0, MapReduce Paradigm with One

Name node and Three Data Nodes configuration. The nodes are having Intel I3

Processors, 2 GB RAMS, 500 GB HDDs.

Dataset Description

We have used 20_Newsgroup dataset. Different news topics are organized in 20 different

newsgroups which includes similar, dissimilar or partial matching news.

Results

Table 1 File Level Deduplication (Block Size 100 KB)
File Size

(MB)

Tag gen.

Time(ms)

File Dup. Check

Time (ms)

Block Dup. Check

time(ms)

Upload Time

(ms)

Total Processing

Time (ms)

1 66 204 881 20384 21539

2 152 515 1477 36532 38718

3 160 20 2289 51403 53956

4 128 11 3167 68747 72073

Fig. 6 File level Deduplication

Webology, Volume 17, Number 2, December, 2020

439 http://www.webology.org

From Table 1 and Fig.6 it is verified that the Tag generation time increases as file size

increases.

File dedup check time is independent of file size. As file size increases number of blocks

also increases and hence Block Dup. Check time also increases. Upload and total

processing time also increases as file size increases.

Table 2 File Level Percentage Deduplication (File Size 4 MB)

Dup. Type Tag gen.

Time (ms)

File Dup.

Check Time

(ms)

Bolck Dup.

Check time

(ms)

Upload Time

(ms)

Total

Processing

Time (ms)

0% 128 11 3167 68747 72073

25% 108 8 2063 50114 52295

50% 67 8 1332 36300 34890

75% 92 35 789 21125 22045

100% 45 14 1 0 66

Fig. 7 File level Percentage Deduplication

Here we kept file size constant 4 MB. From Table 2 and Figure 7 it is verified that

Duplication ratio increases Upload and total processing time decreases.

Table 3 File Level Variable Block Size (File Size 4 MB)

Block

Size (kb)

Tag gen.

Time(ms)

File Dup. Check

Time(ms)

Block Dup.

Check time(ms)

Upload

Time(ms)

Total Processing

Time(ms)

50 131 40 5457 140781 146414

100 128 11 3167 68747 72073

150 129 16 2040 55746 57934

200 134 34 1659 47229 49071

Webology, Volume 17, Number 2, December, 2020

440 http://www.webology.org

Fig. 8 File level Deduplication with variable block size

From Table 3 and Figure 8 it is verified that, as block size increases number of blocks

decreases and hence processing time decreases. Moderate block size selection is

important aspect.

Table 4 Job Level Deduplication (Block Size 100 KB)

File Size (MB) Dedup check time (ms) Job exe. Time(ms) Total Processing Time(ms)

1 67 17712 17867

2 14 29474 29835

3 15 41131 41222

4 10 56047 56141

Fig. 9 Job Level Deduplication with 100 KB block size

From table 4 and figure 9 it is verified that, as file size increases number of blocks also

increases and hence job execution time also increases. The job deduplication time is

constant irrespective of file size.

Webology, Volume 17, Number 2, December, 2020

441 http://www.webology.org

Table 5 Job Level Percentagewise Deduplication (File size 4 MB)

Dedup type Dedup check time(ms) Job exe. Time(ms) Total Processing Time(ms)

0% 10 56047 56141

25% 13 38630 38648

50% 38 25958 26006

75% 35 14834 14880

100% 57 0 70

Fig. 10 Job Level Percentagewise Deduplication

From table 5 and figure 10 it is verified that Duplication ratio increases job execution

time decreases.

Table 6 Job Level Variable Block Size (File size 4 MB)

Block Size(KB) Dedup check time(ms) Job exe. Time(ms) Total Processing Time(ms)

50 55 106873 106935

100 10 56047 56141

150 57 36498 36564

200 128 31149 31600

Fig. 11 Job Level Variable Block Size

Webology, Volume 17, Number 2, December, 2020

442 http://www.webology.org

From table 6 and figure 11 it is verified that as block size increases number of blocks

decreases and hence processing time decreases. Moderate block size selection is

important aspect.

Conclusion

As every job is independent in Hadoop, again and again it has to read data from all Data

Nodes. Moreover relationships between specific jobs is also not getting checked. In our

proposed system, task deduplication technique is used. It checks the similarity between

jobs by checking block ids. Job metadata and data locality details are stored on Name

Node which results in better execution of job. Metadata of executed jobs is preserved.

Thus by preserving job metadata re computations time is saved. Experimental results

show that there is an improvement in job execution time, reduced storage space. Thus,

improved Hadoop performance.

References

Sachin, A.T., Subrahmanyam, K., & Bagwan, A.B. (2016). Big Data and MapReduce

Challenges, Opportunities and Trends. International Journal of Electrical and

Computer Engineering (IJECE), 6(6), 2911-2919.

Sachin, A.T., Subrahmanyam, K., & Bagwan, A.B. (2016). A Study on Digital Forensics in

Hadoop. International Journal of Contol theory and applications, 9(18), 8927-8933.

Sachin, A.T., Subrahmanyam, K., & Bagwan, A.B. (2017). Improving Hadoop Performance

by Enhancing Name Node Capabilities. Fronteiras: Journal of Social, Technological

and Environmental Science, 6(2), 1-8.

Naik, N.S., Negi, A., & Sastry, V.N. (2015). Performance improvement of MapReduce

framework in heterogeneous context using reinforcement learning. Procedia Computer

Science, 50, 169-175.

Alshammari, H., Lee, J., & Bajwa, H. (2016). H2hadoop: Improving hadoop performance

using the metadata of related jobs. IEEE Transactions on Cloud Computing, 6(4),

1031-1040.

Alshammari, H., Lee, J., & Bajwa, H. (2016). Evaluate H2Hadoop and Amazon EMR

performances by processing MR jobs in text data sets. In IEEE Long Island Systems,

Applications and Technology Conference (LISAT), 1-6.

Muhammad, I., Shujaat, H., Maqbool, A., Arsen, A., Muhammad, H.S., Byeong, H.K., &

Sungyoung, L. (2015). Context-aware scheduling in MapReduce: a compact review.

Concurrency and Computation: Practice and Experience, 27(17), 5332–5349.

Saadon, A.G.B., & Mokhtar, H.M. (2017). iiHadoop: an asynchronous distributed framework

for incremental iterative computations. Journal of Big Data, 4(1), 24.

Arati, W.B., & Sanjay, T.S. (2014). Improved MapReduce Framework using High Utility

Transactional Databases. International Journal of Engineering Inventions, 3(12):

49-55.

Webology, Volume 17, Number 2, December, 2020

443 http://www.webology.org

Agarwal, S., & Khanam, Z. (2015). Map reduce: a survey paper on recent

expansion. International Journal of Advanced Computer Science and Applications,

6(8), 209-215.

Alshammari, H., Bajwa, H., & Lee, J. (2015). Enhancing performance of Hadoop and

MapReduce for scientific data using NoSQL database. In Long Island Systems,

Applications and Technology, 1-5.

Cunha, J., Silva, C., & Antunes, M. (2015). Health twitter big bata management with hadoop

framework. Procedia Computer Science, 64, 425-431.

Pravin, S., Bharat, P., Ajay, W., Mukesh, R., & Snehal, M. (2017). Enhanced Hadoop with

Search and MapReduce Concurrency Optimization. International Journal of Pure and

Applied Mathematics, 114(12), 323-331.

Santhana Lakshmi, M., Sandhiya, D., Thasneem, A.N., & Sivashankari, S. (2017). Data

Partitioning for Minimizing Transferred using MapReduce. International Journal of

Engineering Science and Computing, 7(4).

Swapnali, A.S., & Amol, B.R. (2017). A Survey on Performance and Security of Hadoop.

International Journal of Science and Research (IJSR), 6(7), 51-54.

Sridevi, K., & Hema Latha, I. (2017). H2 Hadoop: Metadata Centric BigData Analytics on

Related Jobs Data Using Hadoop Pseudo Distributed Environment. International

Journal of Scientific Research in Computer Science, Engineering and Information

technology, 2(6), 834-841.

Balaji, S.J., Radhika Raju, P., & Ananda Rao, A. (2018). Improving Performance of Map

Reduce using DLAJS Algorithm. International Journal of Computer Trends and

Technology (IJCTT), 61(1).

Kalyani, P., & Dakhode, V.V. (2017). Scalability Analysis and Improvement of Hadoop over

H2Hadoop for Big Data Analysis. IJSRD - International Journal for Scientific

Research & Development, 5(4).

Xun, Y., Zhang, J., Qin, X., & Zhao, X. (2016). FiDoop-DP: Data partitioning in frequent

itemset mining on hadoop clusters. IEEE Transactions on parallel and distributed

systems, 28(1), 101-114.

https://www.oreilly.com/ideas/processing-frameworks-for-hadoop

Mrudula, V., & Vimla, J. (2015). Distributed meta data management scheme in HDFS.

International Journal of Advanced Computer Science and Applications, 6(8).

Zhang, B. (2015). Self- configuration of the Number of concurrently Running Map Reduce

Jobs in a Hadoop Cluster. Independent Commissioner Against Corruption, 149- 150.

Chang, R.S., Liao, C.S., Fan, K.Z., & Wu, C.M. (2014). Dynamic deduplication decision in a

hadoop distributed file system. International Journal of Distributed Sensor Networks,

10(4), 630380.

Sachin, A.T., Subrahmanyam, K., & Bagwan, A.B. (2019). Effective Utilization of Storage

Space by Applying File Level and Block-Level Deduplication over HDFS.

International Journal of Innovative Technology and Exploring Engineering (IJITEE),

8(6S).

Webology, Volume 17, Number 2, December, 2020

444 http://www.webology.org

Authors

Sachin Arun Thanekar, received his B.E (Computer), M.E. (Computer). Degrees

from Pune University. He is a Ph.D. scholar in CSE dept. of KLEF, Vaddeswaram,

AP, India. His current interests include software testing, databases, big data and

information security.

Dr.K. Subrahmanyam is a professor in CSE dept. of KLEF, Vaddeswaram, AP,

India. His current interests include software engineering, software testing, big data,

Cloud computing.

Dr.A.B. Bagwan is working as a Professor in Computer Engineering department of

Siddhant College of Engineering, SPPU, Pune. His current interests include data

Warehouse, data Mining, Algorithms and big data.

